第62回 北海道中学校理科教育研究会 函館大会 3年分科会報告

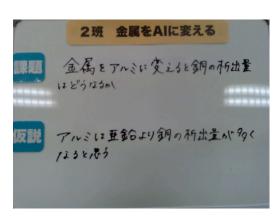
函館市中学校理科研究会 第3分科会 授業者 函館市立五稜郭中学校 片桐尚哉

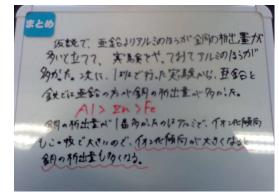
1. 授業の概要 ~教材~


「金属樹」

- ・直接観察できる
- ・結果が見やすい
- ・条件制御しやすい

・課題を設定し、実験を計画・検証しやすい

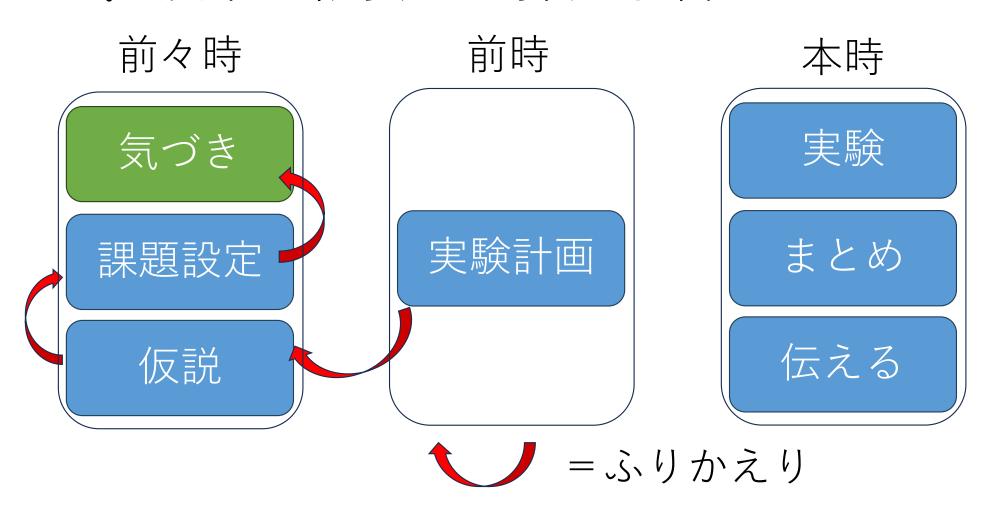

生徒が主体的に学ぶことができる教材


1. 授業の概要

「ホワイトボード」

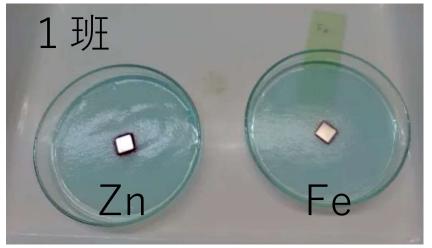
グループ内の意見交流の促進

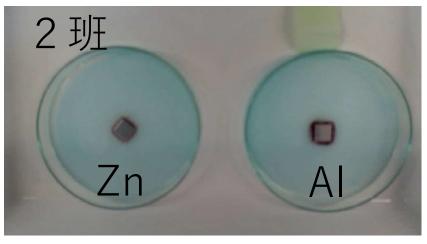
~環境~

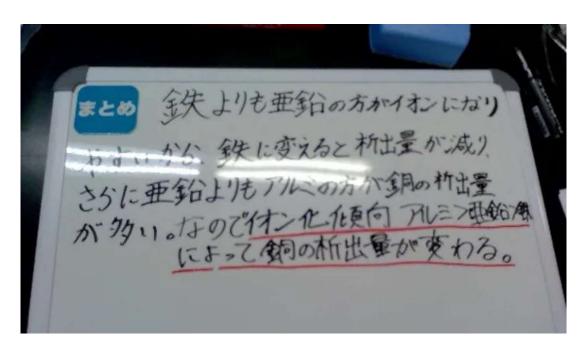

「端末」 ・他グループとの意見交流

他グループとの意見交流の促進 Padlet

生徒が対話的に学ぶことができる環境


1. 授業の概要 ~探究学習~




2. 授業の様子 ~本時~

班	課題	仮説
1	金属の板を亜鉛から鉄にかえ	鉄よりも亜鉛の方がイオンになりやすいから析出する量
	ると析出する量はどうなるか	が減る
2	金属を変えると銅の析出量は	イオン化傾向のなりやすい方につれて析出量が増える。
	どうなるか	イオンがたくさんできる⇒電子がたくさんできる⇒銅イ
		オンとたくさん結ばれ、銅がたくさんできる
3	水溶液を変えると析出する量	銀の方がイオン化傾向が小さいので、亜鉛との差が大き
	は変わるか	なり、析出量が増える
4	硝酸銀水溶液を使った場合、Zn	イオンになりにくい銅に変えたため、亜鉛のときより析
	の板と Cu の板ではどちらが析	出量が減る
	出量が多くなるか	
5	金属の表面積を増やすと析出	塩化銅水溶液の銅イオンが亜鉛原子と接触する機会が増
	量はどうなるか	えるから、表面積を増やすと析出量も増える
6	塩化銅水溶液の量を多くする	塩化銅水溶液の銅イオンが増えるから、析出量が増える
	と析出量はどうなるか	
7	水溶液の量を減らしたら析出	銅イオンの数が減るから、析出量は減る
	量はどうなるか	
8	塩化銅水溶液の濃度を変える	濃度をうすくすると銅イオンの数が減って、電子と合わ
	と析出量はどうなるか	さる量が減るから析出量も減る
9	塩化銅水溶液の濃度を変える	濃度を変えると銅イオンの数も変わり、それに応じて析
	とどうなるか	出量も変わる

2. 授業の様子 ~本時~

2. 授業の様子 ~本時~

- ・イオン化傾向の差
- ・金属の粒子とイオンの粒子が接する面積
- ・イオンの数

イオン化傾向の差が大きいほど、金属の粒子とイオンの粒子が接する回数が多いほど、析出する量は多い

3. その後の様子

- ・各グループの実験の様子、まとめをPadletを 用いて交流
- ・粒子モデルを使って「金属樹」の仕組みを説明

4. 成果

主体的

- ・目的意識をもって授業に取り組むことができた
- 自分の考えや意見をもち、交流することで 深めることができた
- 仮説を立てることでこれまで習ったことをいかす経験ができた

゙ラフをコピー

5. 課題

- 継続したトレーニングが必要(特に気づき・課題づくり・仮説をたてる)
- 自分の考えを表現する方法のトレーニング が必要
- (文章表現・粒子モデル など)